# exponential covariance matrix ( marginal variance =1) for the ozone
#locations
out<- Exp.cov( ozone$x, theta=100)
# out is a 20X20 matrix
out2<- Exp.cov( ozone$x[6:20,],ozone$x[1:2,], theta=100)
# out2 is 15X2 matrix
# Kriging fit where the nugget variance is found by GCV
# Matern covariance shape with range of 100.
#
fit<- Krig( ozone$x, ozone$y, Covariance="Matern", theta=100,smoothness=2)
data( ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
# Omit the NAs
good<- !is.na( y)
x<- x[good,]
y<- y[good]
# example of calling the taper version directly
# Note that default covariance is exponential and default taper is
# Wendland (k=2).
stationary.taper.cov( x[1:3,],x[1:10,] , theta=1.5, Taper.args= list(k=2,theta=2.0,
dimension=2) )-> temp
# temp is now a tapered 3X10 cross covariance matrix in sparse format.
is.spam( temp) # evaluates to TRUE
# should be identical to
# the direct matrix product
temp2<- Exp.cov( x[1:3,],x[1:10,], theta=1.5) * Wendland(rdist(x[1:3,],x[1:10,]),
theta= 2.0, k=2, dimension=2)
test.for.zero( as.matrix(temp), temp2)
# Testing that the "V" option works as advertized ...
x1<- x[1:20,]
x2<- x[1:10,]
V<- matrix( c(2,1,0,4), 2,2)
Vi<- solve( V)
u1<- t(Vi%*% t(x1))
u2<- t(Vi%*% t(x2))
look<- exp(-1*rdist(u1,u2))
look2<- stationary.cov( x1,x2, V= V)
test.for.zero( look, look2)
# Here is an example of how the cross covariance multiply works
# and lots of options on the arguments
Ctest<- rnorm(10)
temp<- stationary.cov( x,x[1:10,], C= Ctest,
Covariance= "Wendland",
k=2, dimension=2, theta=1.5 )
# do multiply explicitly
temp2<- stationary.cov( x,x[1:10,],
Covariance= "Wendland",
k=2, dimension=2, theta=1.5 )%*% Ctest
test.for.zero( temp, temp2)
# use the tapered stationary version
# cov.args is part of the argument list passed to stationary.taper.cov
# within Krig.
# This example needs the spam package.
#
Krig(x,y, cov.function = "stationary.taper.cov", theta=1.5,
cov.args= list(Taper.args= list(k=2, dimension=2,theta=2.0) )
) -> out2
# NOTE: Wendland is the default taper here.
# BTW this is very similar to
Krig(x,y, theta= 1.5)-> out
Run the code above in your browser using DataLab